Periodizing transformations for numerical integration
نویسندگان
چکیده
منابع مشابه
A Novel Class of Symmetric and Nonsymmetric Periodizing Variable Transformations for Numerical Integration
Variable transformations for numerical integration have been used for improving the accuracy of the trapezoidal rule. Specifically, one first transforms the integral I [f ]= ∫ 1 0 f (x) dx via a variable transformation x = φ(t) that maps [0,1] to itself, and then approximates the resulting transformed integral I [f ] = ∫ 1 0 f ( φ(t) ) φ′(t) dt by the trapezoidal rule. In this work, we propose ...
متن کاملFurther extension of a class of periodizing variable transformations for numerical integration
Class Sm variable transformations with integer m, for accurate numerical computation of finite-range integrals via the trapezoidal rule, were introduced and studied by the author. A representative of this class is the sinm -transformation. In a recent work of the author, this class was extended to arbitrary noninteger values of m, and it was shown that exceptionally high accuracies are achieved...
متن کاملExtension of a class of periodizing variable transformations for numerical Integration
Class Sm variable transformations with integer m, for numerical computation of finite-range integrals, were introduced and studied by the author in the paper [A. Sidi, A new variable transformation for numerical integration, Numerical Integration IV, 1993 (H. Brass and G. Hämmerlin, eds.), pp. 359–373.] A representative of this class is the sinm-transformation that has been used with lattice ru...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولNumerical integration using spline quasi-interpolants
In this paper, quadratic rules for obtaining approximate solution of definite integrals as well as single and double integrals using spline quasi-interpolants will be illustrated. The method is applied to a few test examples to illustrate the accuracy and the implementation of the method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1996
ISSN: 0377-0427
DOI: 10.1016/0377-0427(95)00196-4